Welcome to the BSc Hons Technology with Design degree programme of study at the University of Ulster. My name is Michael Harris and, as the course director, I am responsible for the day-to-day administration of this honours degree programme. It is my foremost duty to ensure that you are given every opportunity to advance your academic learning and personal skills development. To this end I am available at the times on my office door (5F09) to discuss and address any issues you may encounter over the duration of the course.

Now some details about the programme of study. This is an exiting honours degree programme that has been structured to provide an inter-related experience for students who wish to pursue a career as a designer within the manufacturing industry, within the teaching profession or in research. The programme aims to develop a learning experience that encompasses the science of technology in the context of design for production. To address these aims the programme is delivered across two of the University’s campuses with the major design modules being covered at Belfast and the technology modules at Jordanstown. Detail of where specific modules are delivered is shown in the Programme Structure Diagram below. In addition to the three University campus based years of the programme, students have the option of participating in a one year industrial placement, this would normally occur between year 2 and the final year of the programme.

Now that you have joined the programme it should be your primary aim to successfully complete the degree, obtain a good classification and secure a worthwhile career path. However, university life is a one-off experience and should be enjoyed. I therefore encourage you actively to participate in the various clubs and societies offered on the Jordanstown campus. These additional activities can be fun and, together with the academic material covered on the course, contribute to your overall development. So again welcome to the course and I hope you quickly settle into university campus life.

Programme Management
A Course Director manages each University Degree Programme. As your Course Director I have responsibility for overall policy matters relating to the course and, as stated earlier, the day-to-day organisation of the course.

There is also a Course Committee associated with each course which comprises the Course Director, Senior Academic staff from the School, Academic staff who are assigned to teach modules on the course and student representatives from each year of the Course. The Course Committee places great emphasis on quality and professionalism in all aspects of the course. There is, in place at School and Faculty
level, a wide variety of checking mechanisms and procedures, both internal and external, to ensure that the standards expected from the course are met and maintained. There are thus mechanisms for example to ensure the quality of the course material and marking standards for both coursework and examinations.

External Examiner

External Examiners are usually Professors from different Universities who moderate and maintain the academic standards of the course. The external examiner for this programme is Professor J Cowan from the Heriot-Watt University. The Course Committee liaises closely with the External Examiner and is always appreciative of his advice and comments.

The External Examiner visits the University twice in the year although contact is made on a regular basis throughout the academic year. On the first visit final year students are questioned about their progress in the final year project. On the second visit he is involved in the moderation of assessment material and the meeting of the board of examiners at which each student is considered individually and recommendations for the award of degrees made.

All final year examination papers with model solutions are presented to the External Examiners for approval. Similarly all examination scripts and coursework are made available for moderation. The reports from the External Examiner form an important part of the documentation associated with the Annual Course Review that is undertaken each year. In this Review as Course Director I am invited to consider the operation of the previous academic year and comment on its success or otherwise. It is a University mechanism for ensuring that the standards expected from the course are being maintained.

Studies Advisor and Studies Advice Group

In addition to the Course Director, you will be assigned a Studies Advisor. This will be a member of academic staff from within the School who will act in a pastoral role for you and other students within a Studies Advice Group. You will be advised of your Group and Studies Advisor by the first week of the course. Groups comprise of between 10 to 15 students and meet on a regular weekly basis. The time for your meeting is indicated in the Timetable for Semester 1 of your course. Attendance at the weekly group meeting is **compulsory** and a register will be kept to monitor this. Absences from the group meetings will automatically activate staff to establish if you are ill or are experiencing any difficulties to cause the absences.

The function of the Studies Advice Group is to provide guidance and information on matters relating to study methods, time management, examination techniques, etc. In addition, it is used to regularly monitor your current position on the course and identify that your studies are going according to plan, or for example on matters relating to problems with grants or accommodation. The Studies Advisor for your group will also be your “voice” in the meeting of the Board of Examiners at the end of the programme year. Consequently you must always make him or her aware of any matters which you feel are affecting your performance in the coursework assessments or examinations, for example absence from the course due to illness or any other reason. Students are occasionally called for jury duty. If this is the case, contact your Studies Adviser immediately. You should also meet with your Studies Advisor on an individual basis (outside of the group) if you need to discuss any personal matters.
Student Staff Consultative Committee
A few weeks after the start of your programme, your class will be asked to nominate a number of student representatives to serve on the Student/Staff Consultative Committee. This committee meets with the staff representatives at least once each semester and provides an opportunity for you to discuss with the academic staff any problems associated with the organisation of the course so that remedial action can be quickly taken if necessary. Note that problems associated with specific modules should always in the first instance be discussed with your lecturer or/and module co-ordinator. These meetings are minuted and the minutes are included with the Course Annual Report.

Course Notice Board
Each programme of study has an information notice board. The BSc(Hons) Technology with Design notice board is located in the 5B corridor. You should locate this notice board and make a point of regularly consulting it for up-to-date information on the course.

Structure of the Year
The University calendar is organised around the normal three terms (Autumn, Spring and Summer). However, the programme is organised on a Semester basis in which the academic year is divided into two parts. Semester 1 runs from September to January. Semester 2 runs from February to June. The Semester dates and vacation periods are contained on the programme calendar shown below.
The Programme Calendar 2004 - 2005

<table>
<thead>
<tr>
<th>Week beginning 13 September, 2004</th>
<th>Course Committee Meeting</th>
</tr>
</thead>
</table>

Semester 1 – Autumn

<table>
<thead>
<tr>
<th>Monday 20 September, 2004</th>
<th>Autumn Teaching begins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week beginning 18 October, 2004</td>
<td>Staff/Student Consultative meetings</td>
</tr>
<tr>
<td>Week beginning 8 November, 2004</td>
<td>Course Committee Meeting</td>
</tr>
<tr>
<td>Friday 10 December, 2004</td>
<td>Teaching Ends</td>
</tr>
<tr>
<td>Monday 13 December, 2004</td>
<td>Christmas Vacation begins</td>
</tr>
<tr>
<td>Saturday 25 December - Monday 3 Jan 2005</td>
<td>University Closed (Christmas)</td>
</tr>
<tr>
<td>Tuesday 4 January, 2005</td>
<td>Christmas vacation ends</td>
</tr>
<tr>
<td>Wednesday 5 – Monday 17 January 2005</td>
<td>Examination Period</td>
</tr>
<tr>
<td>Friday 21 January 2005</td>
<td>Autumn Semester ends</td>
</tr>
</tbody>
</table>

Semester 2 - Spring

<table>
<thead>
<tr>
<th>Monday 24 January, 2005</th>
<th>Spring Teaching begins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week beginning 31 January 2005</td>
<td>Course Committee Meeting</td>
</tr>
<tr>
<td>Week beginning 21 February 2005</td>
<td>Staff/Student Consultative meetings</td>
</tr>
<tr>
<td>Week beginning 7 March 2005</td>
<td>Course Committee Meeting</td>
</tr>
<tr>
<td>March (TBA)</td>
<td>External examiner’s visit to interview students</td>
</tr>
<tr>
<td>Tuesday 17 March, 2005</td>
<td>University Closed for St. Patrick's day</td>
</tr>
<tr>
<td>Friday 25 March , 2005</td>
<td>Easter Vacation begins</td>
</tr>
<tr>
<td>Monday 28 March - Friday 1 April, 2005</td>
<td>University Closed (Easter)</td>
</tr>
<tr>
<td>Friday 8 April 2005</td>
<td>Easter vacation ends</td>
</tr>
<tr>
<td>Monday 11 April 2005</td>
<td>Teaching resumes</td>
</tr>
<tr>
<td>Monday 2 May 2005</td>
<td>University Closed (May day)</td>
</tr>
<tr>
<td>Tuesday 3 May – Friday 6 May 2002</td>
<td>Revision week (non teaching)</td>
</tr>
<tr>
<td>Tuesday 10 May 2005</td>
<td>Project dissertation submission deadline</td>
</tr>
<tr>
<td>Monday 9 May – Saturday 21 may 2005</td>
<td>Examination Period</td>
</tr>
<tr>
<td>Monday 23 May 2005</td>
<td>Dissertation Ranking Meetings</td>
</tr>
<tr>
<td>Friday 27 May 2005</td>
<td>Spring Semester ends</td>
</tr>
<tr>
<td>Thursday 9 June 2005*</td>
<td>Last meetings of Boards of Examiners</td>
</tr>
</tbody>
</table>

* Final year students to be available for interview by the external examiners

| Monday 27 June – Wednesday 6 July 2005 | Graduation ceremonies |

Resit Period

<table>
<thead>
<tr>
<th>Wednesday 17 – Thursday 25 August 2005</th>
<th>Supplementary Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week beginning 29 August 2005</td>
<td>Meetings of Boards of Examiners begin</td>
</tr>
</tbody>
</table>
Modules

During each Semester, you will normally study three or four modules, i.e. a total of 6 or seven modules each year. In the first years of your programme, the modules available to you are all compulsory but in the final year you will be asked to select optional modules. The modules may be continuously assessed by coursework throughout or assessed by a combination of coursework and an examination. Examinations take place at the end of a module; i.e. there are two examination periods each year, in January and in May. In the University's modular programme structure, a module may also be taken by students on courses other than your own. The modular structure for your programme of study is shown in the diagram below.

BSc (Hons) Technology with Design

Programme Structure Diagram (2004 - 2005)

Semester 1
- **Year 1**
 - MEC105J1 Engineering Communications 20 point
 - MEC109J1A Materials & Manufacturing Processes 20 point
 - DES100B1A Design Culture 20 point
- **Year 2**
 - DES302B1 Visual Information 20 point
 - DES306B1 Designing II 30 point
 - MEC498J1 Entrepreneurship Awareness 10 point
- **Year 3**
 - MEC319J4 Industrial Placement
 - BEI300J4 Business Education Initiative
- **Year 4**
 - MEC505J1 Design & Industrial Applications 3 20 point
 - MEC502J1 Computer Aided Engineering 20 point
 - DES302B2 Innovation 20 point
 - MEC501J1A Market Intelligence 20 point
 - DES502B2 Major Project Report 20 point
 - DES505B2 Major Project Presentation 20 point

Or any option offered by SEME subject to timetabling and underpinning

The Timetable for Semester 1

You will be issued with an individual timetable on the Programme Induction day. If changes are necessary throughout the year you will be notified of them and you should amend your individual timetable accordingly.
Time management.

All university programmes are designed on the assumption that you will work an average of 10 hours for each credit point; that is 200 hours for a 20 point module. In general each semester covers the equivalent 60 credit points. Spreading that over twelve teaching weeks and, say, two vacation weeks, implies an average 43 hour week for all classes and private study. Some of you may need to work more than this; no one should be working less as you can always learn more and understand better. However, if you work more than, say, 50 hours, be sure it's time well used and remember that you need breaks!

To achieve your full potential, to understand and enjoy the programme of study, and to maximise your chances of success and future employment, you will need to organise your time sensibly. You will be in timetabled classes for around 18 hours per week, so you need to find about 25 hours more in your own time, eg. 14 hours more within ‘office hours' and something like three whole evenings every week. If you work significantly less than this, you are likely to underachieve, to find your courses incomprehensible and dull, and to be in danger of failure.

Examinations results

At the end of each semester, examinations and coursework are marked. The procedure for obtaining your results is:

- Consult your programme notice board to find out when the pass lists for your course will be published (usually two days after the examinations committee meeting).
- On that date consult the examinations notice board opposite the Registry in the Mall.
- If you are on the pass list, you have satisfied the requirements to progress to the next semester.
- If you are not on the pass list, you must see me, your Course Director; I will give you a Communications of Results form and I will explain the meaning of the decision recorded on it.
- After a few days, any Communications of Results form that has not been collected is posted to a student’s home address.

Programme Specification

What follows is the specification for your programme of study. It makes explicit the intended outcomes in terms of knowledge, understanding, skills and other attributes. This should help you to understand the:

- teaching and learning methods that enable the outcomes to be achieved;
- assessment methods that enable achievement to be demonstrated; and
- relationship of the programme and its study elements to the qualifications framework and to any subsequent professional qualification or career path.
PROGRAMME SPECIFICATION

PROGRAMME TITLE: BSc (Hons) Technology with Design

PLEASE NOTE. This specification provides a concise summary on the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he or she takes full advantage of the learning opportunities provided. More detailed information on the specific learning outcomes, content and the teaching, learning and assessment methods of each module can be found at http://www.engj.ulst.ac.uk/modules/. The accuracy of the information is reviewed by the University. It may also be checked within the independent review process undertaken by the Quality Assurance Agency.

1. AWARDING INSTITUTION/BODY: University Of Ulster
2. TEACHING INSTITUTION University Of Ulster
3. LOCATION Jordanstown and Belfast
4. PROGRAMME ACCREDITED BY Institution of Incorporated Engineers
5. FINAL AWARD BSc (Hons), BSc (Hons) with DIS, BSc(Hons) with DAS
6. MODE OF ATTENDANCE Full Time
7. SPECIALISMS Technology, Design
8. UCAS CODE ULS/U20 HW12 J BSc/TecDes
9. QAA SUBJECT UNIT Engineering

10. EDUCATIONAL AIMS OF THE COURSE -

- To produce graduates with the skills and attributes that designers will be expected to display and consolidate in industry and throughout their professional career.

- To provide the intended designers with the analytical, scientific and engineering principles to act as the foundation of the subject.

- To provide an appropriate balance between the vocational skills necessary for immediate employment and the more fundamental principles necessary for post graduate work.

- To develop the student’s personal attributes, especially in the areas of problem solving, design and critical assessment of Technology.

- To cultivate an attitude of professionalism and to develop a facility in communication skills, team working and project planning.

- To develop the student’s awareness of the environment in terms of materials and energy usage; safety and legal issues within Technology and Design; and general cost implications in design and manufacture.

- To develop a more rigorous understanding of the theory and principles embodied in Technology and Design.

- To demonstrate potential to engage in research through initiative, perception and original innovative thinking.

In addition, for students on the Diploma in Industrial Studies programme:

- To demonstrate potential for management in industry.

In addition, for students on the Diploma in Area Studies programme:

- To demonstrate the ability to function in a business environment within the United States.
11. LEARNING OUTCOMES - The programme provides opportunities for students to achieve and demonstrate the following learning outcomes.

11K KNOWLEDGE AND UNDERSTANDING OF SUBJECT

K1 Apply basic scientific and mathematical principles that are fundamental to engineering technology and design.
K2 Demonstrate a knowledge and understanding of art and design through theory and practice.
K3 Apply the economic, environmental, human and social impacts of technology to the design process.
K4 Realise the interaction between design practice, environmental, and social and cultural disciplines and their communication through visual, forma and spatial understanding.
K5 Generate ideas, concepts, proposals, solutions or arguments independently and/or collaboratively in response to set briefs and/or a self initiated activity.
K6 Choose methodologies and be aware of appropriate skills and techniques such as materials selection, human factors and design for manufacture and assembly.

Teaching and Learning Methods
Subject related qualities are acquired mainly through lectures, seminars, directed reading, videos, IT based resources, case studies and experiential learning. Exposure to Technology and Design environments is an important aspect of the teaching and learning methods as are projects.

Assessment Methods
Testing of the knowledge base is principally through examinations, coursework assignments, laboratory reports and project dissertation.

11I INTELLECTUAL QUALITIES

I1 Be creative in the analysis and solution of problems by presenting evidence that demonstrates ability to research and generate ideas independently and/or collaboratively in response to set briefs and/or a self initiated activity.
I2 Integrate Technology theory and practice with particular emphasis on Design and commercial applications and management considerations.
I3 Integrate information and data from a variety of sources.
I4 Develop intellectual maturity, curiosity, personal creativity and critical evaluation.
I5 Promote the importance of risk taking and independent enquiry.
I6 Develop ideas to demonstrate the ability to select and discern between materials, processes and their context.
I7 Anticipate and accommodate change, and work within the context of ambiguity, uncertainty and unfamiliarity.
I8 Plan, conduct and report a programme of original research.

Teaching and Learning Methods
Intellectual qualities are developed mainly through lectures, seminars, tutorials, coursework
Assessment Methods
Assessment focuses on the coursework submissions, experiment write-ups and project reports. Some of these skills are also assessed in the formal examinations.

11P PROFESSIONAL/PRACTICAL SKILLS

P1 Demonstrate design competencies relevant to chosen area of specialism by applying the design process in the development and realisation of products and systems.
P2 Source and use engineering information.
P3 Utilise industry standard computer packages across a variety of engineering applications.
P4 Apply knowledge of current manufacturing and materials handling methods and develop hands-on experience of basic workshop processes.
P5 Demonstrate proficiency through evidence in observation, investigation, experimentation, enquiry, organisation, making and/or visualisation.
P6 Be insightful in the investigation and generation of individual creative questioning and demonstrate an awareness of the issues associated with ethical design and the widen issues of global sustainability.
P7 Accept accountability by applying management skills to plan, organise and provide leadership in work groups and projects.
P8 Apply business principles to a practice environment.

Teaching and Learning Methods
The teaching and learning methods place emphasis on lectures, experimental work, team projects and design assessments. Workshop practice and supervised industrial placement also contribute.

Assessment Methods
The supervised industrial placement is assessed with visits, reports and oral presentations. Coursework assignments, workshop exercises, laboratory reports, project dissertations and student peer assessments also contribute to the assessment methods.

11T TRANSFERABLE/KEY SKILLS

T1 Use information technology and associated skills.
T2 Communicate with professionals and with society at large in the presentation of work.
T3 Articulate ideas and information comprehensively in visual, oral and written forms.
T4 Analyse information and experiences, formulate independent judgements, and articulate reasoned arguments through reflection, review and evaluation.
T5 Function as a member and a leader of a team.
T6 Transfer techniques and solutions from one field of technology to another.
T7 Develop the facility for independent learning, open mindedness, and the spirit of critical enquiry.

Teaching and Learning Methods
Transferable and key skills are delivered throughout the course, i.e. lectures, coursework assignments, laboratory work, industrial placement year and project dissertations. The IT skills are taught within the course structure.

Assessment Methods
Assessment is principally through examination, coursework assignments, project dissertations and presentations. Assessment of teamwork is through submission of teamwork tasks, student peer and self assessment, and oral presentations.

11E ENTREPRENEURSHIP TRAINING

E1 Demonstrate an understanding of entrepreneurship, the entrepreneur and the entrepreneurial process.
E2 Demonstrate an understanding of the central role of creativity and innovation in entrepreneurship and the challenges of protecting new ideas.
E3 Apply the steps required to research the potential for and setting up of a new venture.
E4 Be insightful of the key resources for a new venture creation and source, acquire and manage financial resources.

Teaching and Learning Methods
Entrepreneurship training will be student centred and designed to encourage independent learning and study. The focus is on the process and will employ maximum flexibility in the learning environment and in methods of delivery. As a consequence, a mixture of directed lectures and mentoring workshops will supplement Web-CT based learning material.

Assessment Methods
Assessment is principally through coursework assignments and project dissertations.
MODULE OUTCOME MAP for BSc(Hons) Technology with Design

Please Note: The matrix displays only the main measurable outcomes. There may be other outcomes detailed in the module descriptions (e.g. attitudes and behaviours) which are not assessed.

Module No.	Module Description	K1	K2	K3	K4	K5	K6	I1	I2	I3	I4	I5	I6	I7	I8	P1	P2	P3	P4	P5	P6	P7	P8	T1	T2	T3	T4	T5	T6	T7	E1	E2	E3	E4		
MEC105J1	Engineering Communications	X	X	X	X	X																														
MEC109J1A	Materials & Manuf, Processes	X	X	X	X	X	X																													
DES100B1	Design Culture	X	X																X																	
MEC114J2	Mechanical Technology	X	X																																	
MEC106J2	Design & CAE 1	X	X	X	X									X	X	X	X																			
DES104B2A	Design Knowledge	X	X	X	X	X	X	X	X																											
DES302B1	Visual Information	X	X	X	X	X	X																													
DES306B1	Designing II	X	X	X	X	X	X																													
MEC498J1	Entrepreneurship Awareness	X	X	X																																
EEE101J2B	Elect. Tech. & Instrumentation	X																																		
MEC304J2	Design & Industrial Appl. 2	X	X	X	X	X	X																													
MEC316J2A	Automation	X	X																																	
MEC319J4	Industrial Placement	X	X	X	X	X	X	X	X																											
BEI300J4	Business Education Initiative	X																																		
MEC505J1	Design & Industrial Appl. 3	X	X	X	X	X	X	X	X																											
MEC502J1	Computer Aided Engineering	X	X	X																																
MEC301J1	Manufacturing Systems	X	X	X																																
DES503J1A	Market Intelligence	X	X	X	X	X	X	X																												
MEC501J2	Environmental Engineering	X	X	X	X																															
DES502B2	Innovation	X	X	X	X	X	X	X																												
DES505B2	Major Project report	X	X	X																																
DES506B2	Major Project Presentation	X	X																																	
12. COURSE STRUCTURE AND REQUIREMENTS

The programme is full time and conforms to the University’s modular requirements. An accumulation of 120 credit points is necessary to complete each year of the course, with the exception of the industrial or area placement year. Modules in the first, second and final years are common for all three programmes. The BSc (Hons) stream is of 3 years duration; the BSc (Hons) with DIS and BSc (Hons) with DAS streams are of 4 years duration with the one year industrial or area placement occurring between second and final year.

Progression and award criteria are outlined in section 16.

Details of the modules, and their corresponding credit level, for each programme are listed below.

Year 1

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Module Title</th>
<th>Credit Level</th>
<th>Credit Points</th>
<th>*Module Status</th>
<th>Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC105J1</td>
<td>Engineering Communications</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC109J1A</td>
<td>Materials and manufacturing processes</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DES100B1</td>
<td>Design Culture</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC114J2</td>
<td>Mechanical Technology</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC106J2</td>
<td>Design and CAE 1</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DES104B2A</td>
<td>Design Knowledge</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Module Title</th>
<th>Credit Level</th>
<th>Credit Points</th>
<th>*Module Status</th>
<th>Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES302B1</td>
<td>Visual Information</td>
<td>2</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>DES306B1</td>
<td>Designing II</td>
<td>2</td>
<td>30</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC498J1</td>
<td>Entrepreneurship Awareness</td>
<td>2</td>
<td>10</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>EEE101J1B</td>
<td>Electrical technology and instrumentation</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC304J2</td>
<td>Design and industrial applications 2</td>
<td>2</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC316J2A</td>
<td>Automation</td>
<td>2</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

BSc (Hons) with DIS third year

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Module Title</th>
<th>Credit Level</th>
<th>Credit Points</th>
<th>*Module Status</th>
<th>Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC319J4</td>
<td>Industrial Placement</td>
<td>2</td>
<td>60</td>
<td>O</td>
<td>DIS on award of degree</td>
</tr>
</tbody>
</table>

BSc (Hons) with DAS third year

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Module Title</th>
<th>Credit Level</th>
<th>Credit Points</th>
<th>*Module Status</th>
<th>Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEI300J4</td>
<td>Business Education Initiative</td>
<td>2</td>
<td>60</td>
<td>O</td>
<td>DAS on award of degree</td>
</tr>
</tbody>
</table>

Final Year

Students take 6 modules to a total credit points value of 120.

<table>
<thead>
<tr>
<th>Module No.</th>
<th>Module Title</th>
<th>Credit Level</th>
<th>Credit Points</th>
<th>*Module Status</th>
<th>Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC505J1</td>
<td>Design and Industrial Applications 3</td>
<td>3</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>MEC502J1</td>
<td>Computer Aided Engineering</td>
<td>3</td>
<td>20</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
13. SUPPORT FOR STUDENTS AND THEIR LEARNING

Students and their learning are supported in a number of ways:-

- Student handbooks and module study guides.
- Access for students to the Course Director.
- Student representation on the course committee.
- Opportunity to address general course concerns through the student/staff consultative committee (separate committees are formed for each year of the course).
- Personal studies advisors allocated to each student.
- A comprehensive induction for new students regardless of entry level.
- Feedback on academic progress at the end of each semester.
- Training and guidance on safety-related matters.
- Facilities and assistance offered by the library and computer services.
- Department of Student Affairs provides services in the fields of accommodation, health, counselling & guidance, careers, childcare, finance & special needs.
- The Careers Service, in conjunction with course teams, provides structured careers management skills.
- University has protocols for assessment of students with disabilities.
- Students Union, in conjunction with the International Office, runs an orientation course for overseas students.

14. CRITERIA FOR ADMISSION TO THE PROGRAMME

Applicants must satisfy the University's general entry requirements and specific requirements for admission to the programme are detailed below:

BSc (Hons)

- **GCE** - ‘A’ level grades CCD including mathematics, physics, chemistry, technology or computing.
- **AGNVQ** - Distinction in Science, Engineering or Manufacturing plus 3 additional relevant units or A level grade C or AS grade A (see above).
- **BTEC Diploma in Engineering or Construction or Computing** - 2 Distinctions plus 4 Merits in level III.

Other qualifications as deemed equivalent to the above.
Direct entry into year 2 is also possible from a number of different course programmes. (eg. HND Engineering, similar degree courses, etc.)
15. EVALUATING AND IMPROVING THE QUALITY AND STANDARD OF LEARNING AND TEACHING

The following mechanisms are used:

- Regular student/staff consultative meetings provide the means of highlighting and correcting any difficulties relating to course delivery.
- Students are given opportunity to be represented at course committee and faculty board.
- Staff teaching performance is monitored annually through student questionnaires. In addition, staff are encouraged to participate in peer observation of their teaching.
- At faculty level there is an active Learning and Teaching Committee responsible for co-ordinating developments and initiatives relating to innovative methods for delivery, technology mediated learning, as well as general resource issues. In addition, this committee is responsible for regulating faculty codes of practice relating to course management and delivery.
- The University has an active Educational Development Unit which supports and funds specific research/projects into improvement of delivery and overall student experience.
- The University has an active Staff Development Unit which works closely with Educational Development and, in addition provides specific training/development for staff. Specifically, all new staff (opportunity is also provided for existing staff) have to pursue a formal teaching qualification (Postgraduate Certificate) and are encouraged to apply for membership of the ILT.

16. REGULATION OF STANDARDS

General Requirements

General course regulations are in accordance with the current University of Ulster “Charter, Statutes, Ordinances and Regulations” and updated annually in the Student Handbook for the course.

Specific Requirements

The following outlines those regulations specific to the course:

Final Year Assessment

The award of degree is based on the assessment of student performance in the final year of the degree. An average of the final year marks will be used to classify the degree.

Performance levels for Honours Degree Classification

The following percentages shall be used as the basis for determining candidates’ overall gradings and degree classifications.

- At least 70% First Class
- At least 60% and less than 70% Upper second class
- At least 50% and less than 60% Lower second class
- At least 40% and less than 50% Third Class
- Less than 40% Fail

In order to be considered for a particular class of honours degree a candidate must normally have obtained marks in an appropriate range or above in at least 50% of the course modules.
External Examination

An External Examiner is appointed for the programme. His/her role is to moderate the assessment process, ensure appropriate standard of final awards and ensure that accuracy and consistency of assessment has been applied. Detailed duties are as specified in the current University of Ulster “Code of Practice for External Examiners” (consistent with QAA standards).

17. INDICATORS OF QUALITY RELATING TO LEARNING AND TEACHING

- Teaching staff within the school are encouraged to become accredited members of the Institute for Learning and Teaching. To date 3 members have fulfilled the requirements through completion of the Postgraduate Certificate in University Teaching. A further 5 staff members are in the process of gaining the award.
- As well as teaching, most staff are actively engaged in research. In addition, most have substantial industrial experience prior to joining the University. A significant number are full members of appropriate professional bodies (e.g. CEng, MIMechE, etc.)
- A member of the course team was awarded the Distinguished Teacher award from the University.
- All students who choose so obtain a suitable one year industrial placement for their DIS year either locally or internationally.
- Graduates from the courses have substantially better employment prospects than those from other subject disciplines. Most will have paid employment within industry within 3 months of graduation.
- The subject responsible for the course “Mechanical Engineering” achieved a overall Satisfactory in the 1994 Quality Assessment Exercise.
- The related subject areas of “Metallurgy and Materials” and “General Engineering” both achieved 3a’s in the 1996 Research Assessment Exercise. Further improvements are anticipated in future exercises.

Course Regulations

Your Course is governed by regulations that in part are set, and changed, by the University.

University Course Regulations

The current regulations are given at the end of this section on your course: but the regulations that will apply to you at any stage of your Course will be those in force at the time. Updates are published on the University web site. The number system used is that of the standard University template for such regulations.

Tables of Modules

The final section of the University Course Regulations, Table of Modules, is specific to your Course and is given below.
TABLE OF MODULES

<table>
<thead>
<tr>
<th>Year</th>
<th>Sem</th>
<th>Module No.</th>
<th>Module Title</th>
<th>Level</th>
<th>Credit</th>
<th>Status</th>
<th>Condone</th>
<th>Assessment</th>
<th>Contribution to Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>MEC105 J1</td>
<td>Engineering Communications</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MEC109J1A</td>
<td>Materials & Manuf. Processes</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>DES100B1</td>
<td>Design Culture</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>MEC106J2</td>
<td>Design and CAE 1</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>MEC114J2</td>
<td>Mechanical Technology</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>DES104B2A</td>
<td>Design Knowledge</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>DES302B1</td>
<td>Visual Information</td>
<td>1</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>DES306B1</td>
<td>Designing II</td>
<td>2</td>
<td>30</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>MEC498J1</td>
<td>Entrepreneurship Awareness</td>
<td>2</td>
<td>10</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>EEE101J2B</td>
<td>Electrical Tech. & Instrumentation</td>
<td>2</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>MEC304J2</td>
<td>Design & Industrial Applications 2</td>
<td>2</td>
<td>30</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>MEC316J2A</td>
<td>Automation</td>
<td>2</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>MEC505J1</td>
<td>Design & Industrial Applications 3</td>
<td>3</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>MEC502J1</td>
<td>Computer Aided Engineering</td>
<td>3</td>
<td>20</td>
<td>C</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>MEC301J1</td>
<td>Manufacturing Systems</td>
<td>3</td>
<td>20</td>
<td>O</td>
<td>Y</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>DES503J1A</td>
<td>Market Intelligence</td>
<td>3</td>
<td>20</td>
<td>O</td>
<td>Y</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3/4</td>
<td>2</td>
<td>MEC501J2</td>
<td>Environmental Engineering</td>
<td>3</td>
<td>20</td>
<td>O</td>
<td>Y</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>3/4</td>
<td>2</td>
<td>DES502B2</td>
<td>Innovation</td>
<td>3</td>
<td>20</td>
<td>O</td>
<td>Y</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3/4</td>
<td>2</td>
<td>DES505B2</td>
<td>Major Project Report</td>
<td>3</td>
<td>20</td>
<td>C</td>
<td>N</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3/4</td>
<td>2</td>
<td>DES506B2</td>
<td>Major Project Presentation</td>
<td>3</td>
<td>20</td>
<td>C</td>
<td>N</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
UNIVERSITY PROGRAMME REGULATIONS

Set out in the following pages are the University regulations for the degree programme at the time of printing.

1. PROGRAMME TITLE BSc Honours Technology with Design

2. MODE OF ATTENDANCE Full Time

3. DURATION 4 Years

4. LOCATION Jordanstown

5. FACULTY Engineering

6. ADMISSION REQUIREMENTS

6.1 Applicants must:

(a) Satisfy the University’s general entrance requirements

(b) Have a minimum UCAS Tariff of 220 points at A-level (e.g. CCD) including mathematics, physics, chemistry, technology or computing, or equivalent achievement.

(c) Hold at least four GCSE passes (or equivalent) at grade C or above. These must include passes in English and Mathematics.

No subject may be counted at more than one level except in the case of the Intermediate GNVQ and Advanced GNVQ/Vocational A level.

6.2 Applicants of 21 years of age or over (or in exceptional circumstances, of less than 21) at the date of entry may be admitted even if they have not satisfied the requirements, provided they can demonstrate an ability to undertake the programme.

7. EXEMPTIONS

Studies pursued and examinations passed in respect of other qualifications awarded by the University or by another university or other educational institution may be accepted as exempting candidates from part of an approved programme provided that they shall register as students of the University of Ulster for modules amounting to at least the final third of the credit value of the award at the highest level.

8. PLACEMENT

Following normally after Year 2, students have the option to spend the year on industrial training. Successful completion of the professional training elements may lead to the award of the Diploma in Industrial Studies (DIS).

9 ATTENDANCE REQUIREMENTS
9.1 Students are expected to attend all classes associated with the course and be punctual and regular in attendance.

9.2 A student who has not been in attendance for more than three days through illness or other cause must notify immediately the Course Director. The student shall state the reasons for the absence and whether it is likely to be prolonged. Where the absence is for a period of more than five working days, and is caused by illness which may affect their studies, the student shall provide appropriate medical certification in accordance with the General Regulations for Students.

9.3 Students who are absent without good cause for a substantial proportion of classes may be required to discontinue studies, in accordance with the General Regulations for Students.

10. RULES GOVERNING STUDENT CHOICE

10.1 Modules are offered as indicated in the programme handbook and specification. Revisions may be made in accordance with the University’s quality assurance procedures. Module availability may vary.

11. EXAMINATION AND ASSESSMENT

11.1 The performance of candidates shall be assessed by the Board of Examiners in accordance with the Regulations Governing Examinations in Courses of Study.

11.2 Candidates shall be assessed in the modules for which they have enrolled in each year of study. At the discretion of the Board of Examiners candidates may be required to attend a viva voce examination.

11.3 Within each module candidates shall be assessed by coursework or a combination of coursework and examination in accordance with information contained in the programme specification.

11.4 The pass mark shall be 40% for each assessment element and for the module overall.

11.5 The pass mark for the placement year is 50%; a mark of 40% is sufficient for progression to the next stage of the programme.

12. SUBMISSION OF COURSEWORK

12.1 Coursework shall be submitted by the dates specified by the course committee.
12.2 Students may seek prior consent from the course committee to submit coursework after the official deadline; such requests must be accompanied by a satisfactory explanation, and in the case of illness by a medical certificate. This application shall be made to the Course Director.

12.3 Coursework submitted without consent after the deadline shall not normally be accepted.

13. PROGRESS

13.1 Subject to 14 and 15 hereof, candidates are required to pass all modules in each year of study in order to proceed to the next. Progress from semester 1 to semester 2 is automatic.

13.2 Transfer

Candidates who find difficulties on the Honours degree programme may at the discretion of the Board of Examiners transfer to the degree programme.

14. CONDONEMENT

14.1 Condonement permits candidates to fail in modules without a requirement to repeat assessment. Failure in assessment elements of modules or in the modules overall as specified in the course specification shall not be condoned.

In considering performance in an academic year, subject to this proviso, the Board of Examiners shall condone failure in modules in accordance with the following principles:

14.2 Minimum Mark

The minimum percentage which must be obtained by a candidate in each assessment element (coursework or examination) in order to be considered for condonement of failure is 35%.

14.3 Extent of Condonement

14.3.1 In any year other than the final year, candidates may be permitted to fail in module(s) to a value of no more than one-third of the credit value of modules studied;

Candidates who are repeating an entire year may be permitted to fail in module(s) to a value of one-sixth of the credit value of modules studied.

14.3.2 In the final year, candidates may be permitted to fail in module(s) to a value of no more than one-sixth of the credit value of modules studied.
14.4 Application

14.4.1 In modules which are assessed by coursework only, failure may be condoned provided that there is evidence of sufficient merit in the other modules taken in the year, demonstrated by an overall mark of at least 45% (with each module weighted according to its credit value).

14.4.2 In modules which are assessed by a combination of coursework and examination, failure in one element may be condoned provided that there is evidence of sufficient merit in the other element demonstrated by an overall mark of at least 45% in the module (with the application of equal weighting between the two elements). If this evidence is insufficient, an overall mark of 45% in the year may be accepted (with each module weighted according to its credit value).

14.4.3 In modules which are assessed by a combination of coursework and examination, failure in both elements may be condoned provided that there is evidence of sufficient merit in the other modules taken in the year, demonstrated by an overall mark of at least 45% (with each module weighted according to its credit value).

14.5 Repeated Assessments

or the purpose of applying condonement only, the actual mark achieved shall be considered and the maximum mark allowed (40%) shall be disregarded.

15. CONSEQUENCES OF FAILURE

15.1 Candidates who fail to satisfy the Board of Examiners in assessment may be permitted at the discretion of the Board to re-present themselves as specified in 15.2 for one or more supplementary examination and repeat such coursework or other assessment requirements as shall be prescribed by the Board. Such candidates may be exempted at the discretion of the Board from the normal attendance requirements. Where candidates are required to repeat coursework or to take a supplementary examination the original mark in the failed element shall be replaced by a mark of 40% or the repeat mark whichever is the lower for the purpose of calculating the module result, except in the placement year where the maximum mark allowed shall be 50%.

15.2 In each year, other than the final year, the consequences of failure which is not condoned in accordance with 14 hereof shall normally be as follows:

<table>
<thead>
<tr>
<th>Failure at the First Attempt</th>
<th>Repeat specified examinations and/or coursework in the failed modules (examinations August).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure in modules with an overall value up to and including 60 credit points.</td>
<td>Repeat specified examinations and/or coursework in the failed modules (examinations August).</td>
</tr>
<tr>
<td>Failure in modules with an overall value of 70 or 80 credit points.</td>
<td>Repeat specified examinations and/or coursework in the failed first semester.</td>
</tr>
</tbody>
</table>
module(s) (examinations January) and of specified examinations and/or coursework in the second semester modules (examinations May) with or without attendance OR withdraw from the course or discontinue studies at the University.

Failure in modules with an overall value of more than 80 credit points
Withdraw from the course or discontinue studies at the University.

Failure by candidates in year 2 of sandwich courses
Exceptionally second year students on sandwich courses may be permitted to commence the placement period, pending a requirement to represent themselves for supplementary written examinations or to repeat coursework.

Failure at the Second Attempt
Failure in modules with an overall value up to and including 20 credit points
Provided that the module(s) are not prerequisite(s), proceed to next year and repeat once only specified examination(s); and/or coursework in the failed module(s); at the next examination period (January or May).

Failure in modules with an overall value up to and including 40 credit points (except as above)
Repeat once only specified examination(s); and/or coursework in the failed module(s); at the next examination period (January or May or August if semester already repeated) with or without attendance (progress to next year not permitted).

Failure in modules with an overall value of more than 40 credit points
Withdraw from the course or discontinue studies at the University.

Consequences of failure in placement year (DIS)

Failure at the First Attempt
Repeat once only all or part of placement.

Failure at the Second Attempt
Withdraw from the course.

15.3 Failure in the Final Year (Honours degree)

In the final year the consequences of failure which is not condoned in accordance with section 14 hereof, shall normally be as follows:
16. CLASSIFICATION OF FINAL RESULT

16.1 The programme specification indicates the contribution of each module/level to the final award.

16.2 Classification of Final Result (Honours degree)

The following percentages shall be used as a basis for determining candidates’ overall gradings:

Class I At least 70%
Class II (division i) (IIi) At least 60% and less than 70%
Class II (division ii) (IIii) At least 50% and less than 60%
Class III At least 40% and less than 50%

In order to be considered for a particular class of Honours degree a candidate must have obtained marks in the appropriate range or above in at least 50% of the credit value of Level 3 modules contributing to the final award, in addition to achieving the overall minimum percentage.

Candidates who have not qualified for a classified award at the first attempt and who are permitted to represent themselves for assessment in accordance with 15.3 hereof shall be required to achieve an overall mark of at least 40% in order to be considered for the award of a classified or an unclassified Honours degree.

16.3 Award of Diploma in Industrial Studies

The following shall be the minimum percentages used in determining the overall gradings of candidates in the Diploma.

Pass with Commendation 70%
Pass 50%
17. ILLNESS AND OTHER EXTENUATING CIRCUMSTANCES

17.1 In any year other than final year:

The Board of Examiners may in the case of candidates who are prevented by illness or other sufficient cause from taking or completing the whole or part of the assessment during the course, or whose results are substantially affected by illness or other sufficient cause, permit the candidates to complete, take, or repeat the assessment in one or more modules at an approved subsequent date.

17.2 Final year (Honours Degree):

The Board of Examiners may in the case of candidates who are prevented by illness or other sufficient cause from taking or completing the whole or part of the final stage assessment or whose results are substantially affected by illness or other sufficient cause:

(a) permit the candidate to complete, take, or repeat as candidates for the Honours degree, the assessment in one or more modules at an approved subsequent date or

(b) deem the candidate to have passed and recommend the award of an Aegrotat Honours Degree.

17.3 Before an Aegrotat award is recommended a candidate must have signified that he or she is willing to accept the award.

18. REVISIONS TO REGULATIONS

These regulations may be revised during the student’s period of registration in accordance with the procedures approved by Senate.